Paper Title
A DFT-based studies on Electronic and Optical Properties of Tetragonal Hafnium Dioxide (t-HfO2) and the Effect of Silicon (Si) Doping
Abstract
The electronic and optical properties of silicon-doped tetragonal hafnium dioxide (t-HfO2) have been investigated
by using the meta-generalized gradient approximation (MGGA-TB09+c) approach within the framework of density
functional theory (DFT). Silicon (Si) is identified to promote the t-HfO2 phase most effectively among the investigated
dopants. Si doping is an important approach to improve the desired properties of high-k gate dielectric oxides. The unique
characteristics of this material are closely associated with the inclusion of dopants within the unit cell. The primary objective
of this study is to examine and contrast various systems distinguished by their doping percentages of Si as 0%, 6.25%,
12.50%, and 18.75% respectively. The use of on-site Coulomb interaction is utilized to investigate the Hf 5d, O 2p, and Si
3p orbitals. The ground state properties such as lattice parameters and volume are calculated and compared to the available
experimental data and previous theoretical works. A comprehensive theoretical investigation of bandgap, and dielectric
properties is done. This analysis not only yielded the experimental bandgap of the material of 5.83 eV but also revealed a
notable reduction in the bandgap of the doped structures. Subsequently, the optical properties are computed, revealing a
discernible isotropic spectrum phenomenon, which is attributed to the inherent electronic configuration of the dopant. A
significant increase in the static dielectric constant is seen for the doped systems, accompanied by a shift in the absorption
spectra at a specific wavelength, hence enabling optical absorption within the visible range. The experimental results
demonstrated a simultaneous rise in the real component of the refractive index and a significant enhancement in optical
conductivity. These findings indicate the promising suitability of the proposed materials for applications in negative
capacitance field effect transistors and future-generation memory devices.
Keywords - DFT, t-HfO2, Si Doping, Electronic Properties, Optical Properties